浅谈神经网络中的激活函数

  • 时间:
  • 浏览:2
  • 来源:大发快三_快三苹果app下载_大发快三苹果app下载

       激活函数是神经网络中一一有一个重要的环节,本文将介绍为哪些神经网络网络要利用激活函数,几种常用的激活函数(逻辑函数Sigmoid、双曲正切函数tanh、线性整流函数(ReLU),神经网络中的梯度消失现象和ReLU如可出理 梯度消失。

       机会神经网络这样 进行能这样 提取非线性价值形式的卷积操作,而且该神经网络而且用激活函数,这样 你你这个神经网络第i层输出这样 Wxi+b。这样 此神经网络不论有有几个层,第i层的输出都有一一有一个关于第i层输入xi的线性组合,相当于此时多层神经网络退化为一一有一个多层的线性回归模型,难以学习如图像、音频、文本等复杂数据的价值形式。

       正机会你你这个意味着,神经网络要引入激活函数来给神经网络增加你这个非线性的价值形式,全都 目前常见的激活函数大多是非线性函数。这样 神经网络中下一层得到的输入不再是线性组合了。

2.1 逻辑函数Sigmoid [1]

       逻辑函数(logistic function)或逻辑曲线(logistic curve)是你这个常见的S函数,它是皮埃尔·弗朗索瓦·韦吕勒在1844或1845年在研究它与人口增长的关系时命名的。

       一一有一个简单的Logistic函数表达式为:

\[ f\left( x \right) = \frac{1}{{1 + {e^{ - x}}}} \]



图1 标准逻辑函数的图像

       逻辑函数形如S,全都 通常也叫做S形函数。

       从函数图像易知f(x)的定义域为[-∞, +∞], 值域是(0,1)

       对f(x)求导数,易得

\[f'\left( x \right) = {\left( {\frac{1}{{1 + {e^{ - x}}}}} \right)^\prime } = \frac{{{e^{ - x}}}}{{{{\left( {1 + {e^{ - x}}} \right)}^2}}}\;\; = f\left( x \right)\left( {1 - f\left( x \right)} \right)\]

2.2 双曲正切函数tanh [2]

       双曲正切函数是双曲函数的你这个。在数学中,双曲函数是一类与常见的三角函数类似于的函数。双曲正切函数的定义为

\[f\left( x \right) = \tanh \left( x \right) = \frac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}}\]



图2 双曲正切函数的图像(同逻辑函数类似于)

       从函数图像易知f(x)的定义域为[-∞, +∞], 值域是(-1,1)

       对f(x)求导数,易得

\[f'\left( x \right) = {\left( {\frac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}}} \right)^\prime } = \frac{4}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}\;\; = 1 - f{\left( x \right)^2}\]

2.3 线性整流函数ReLU [3]

       线性整流函数(Rectified Linear Unit, ReLU),又称修正线性单元, 是你这个人工神经网络中常用的激活函数,通常指代以斜坡函数及其变种为代表的非线性函数。

       通常意义下,线性整流函数指代数学中的斜坡函数,即

\[f\left( x \right) = \left\{ \begin{array}{l} x\quad \quad x \ge 0 \\ 0\quad \quad x < 0 \\ \end{array} \right.\]



图3 ReLU函数图像

       从函数图像易知f(x)的定义域为[-∞, +∞], 值域是[0, +∞)

       对f(x)求导数,易得

\[f'\left( x \right) = \left\{ \begin{array}{l} 1\quad \quad x \ge 0 \\ 0\quad \quad x < 0 \\ \end{array} \right.\]

       使用S形函数作为激活的神经网络中,随着神经网络的层数增加,神经网络上面层在梯度下降中求导的梯度几乎为0,从而意味着神经网络网络上面层的权值矩阵几乎无法更新。表现为随着隐藏层数目的增加,分类准确率反而下降了。你你这个现象叫做消失的梯度现象。

       假设神经网络这样 三层,用S型函数作为激活函数

       第一层输入为x, 输出为S(W1x+b1)

       第二层输入为S(W1x+b1),输出为S(W2S(W1x+b1)+b2)

       第三层输入为S(W2S(W1x+b1)+b2),输出为S(W3S(W2S(W1x+b1)+b2)+b3)

       一起简记住每层在激活函数出理 前的值为ai, 输出为fi

       假设最后损失函数为L,L是一一有一个关于f3的函数,这样 求导易得

\[\begin{array}{l} \frac{{\partial L}}{{\partial {W_1}}} = \frac{{\partial L}}{{\partial {f_3}}} \cdot \frac{{\partial S\left( {{W_3}S\left( {{W_2}S\left( {{W_1}x + {b_1}} \right) + {b_2}} \right) + {b_3}} \right)}}{{\partial {W_1}}} \\ \quad \quad = \frac{{\partial L}}{{\partial {f_3}}} \cdot \frac{{\partial S}}{{\partial {a_3}}} \cdot \frac{{\partial {W_3}S\left( {{W_2}S\left( {{W_1}x + {b_1}} \right) + {b_2}} \right) + {b_3}}}{{\partial {W_1}}} \\ \quad \quad = \frac{{\partial L}}{{\partial {f_3}}} \cdot \frac{{\partial S}}{{\partial {a_3}}} \cdot {W_3} \cdot \frac{{\partial S\left( {{W_2}S\left( {{W_1}x + {b_1}} \right) + {b_2}} \right)}}{{\partial {W_1}}} \\ \quad \quad = \cdots \\ \quad \quad = \frac{{\partial L}}{{\partial {f_3}}} \cdot \frac{{\partial S}}{{\partial {a_3}}} \cdot {W_3} \cdot \frac{{\partial S}}{{\partial {a_2}}} \cdot {W_2} \cdot \frac{{\partial S}}{{\partial {a_1}}} \cdot \frac{{\partial {a_1}}}{{\partial {W_1}}} \\ \end{array}\]

       其中偏导数∂S/ ∂ai是造成梯度消失的意味着,机会S函数的导数阈值为

\[f'\left( x \right) = \frac{{{e^{ - x}}}}{{{{\left( {1 + {e^{ - x}}} \right)}^2}}}\;\; \in \left( {0,\left. {\frac{1}{4}} \right]} \right.\]

       即有0<∂S/ ∂a1≤0.25, 0<∂S/ ∂a2≤0.25, 0<∂S/ ∂3≤0.25, 在损失函数偏导表达式中一一有一个偏导数相乘有:

\[0 < \frac{{\partial S}}{{\partial {a_3}}}\frac{{\partial S}}{{\partial {a_2}}}\frac{{\partial S}}{{\partial {a_1}}} \le 0.015625\]

       这样 会减小损失函数的数值,机会神经网络是20层,则有

\[0 < \frac{{\partial S}}{{\partial {a_{20}}}}\frac{{\partial S}}{{\partial {a_{19}}}} \cdots \frac{{\partial S}}{{\partial {a_1}}} \le {0.25^{20}} = {\rm{9}}.0{\rm{94}} \times {10^{ - 13}}\]

       这是一一有一个更小的数,全都 神经网络后几层求第一层参数W1的梯度就非常小。而ReLU函数而且为了出理 梯度消失现象,机会ReLU求导这样 一一有一个值1或0,这样 语句假若神经网络梯度中三根路径上的导数都有1,这样 无论网络有有几个层,网络后几层的梯度都能这样 传播到网络前几层。

  1. https://en.wikipedia.org/wiki/Logistic_function
  2. https://en.wikipedia.org/wiki/Hyperbolic_function
  3. https://en.wikipedia.org/wiki/Rectifier_(neural_networks)